skip to main content


Search for: All records

Creators/Authors contains: "Kirk, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Coronal Holes (CHs) are regions of open magnetic-field lines, resulting in high-speed solar wind. Accurate detection of CHs is vital for space-weather prediction. This paper presents an intramethod ensemble for coronal-hole detection based on the Active Contours Without Edges (ACWE) segmentation algorithm. The purpose of this ensemble is to develop a confidence map that defines, for all ondisk regions of a solar extreme ultraviolet (EUV) image, the likelihood that each region belongs to a CH based on that region’s proximity to, and homogeneity with, the core of identified CH regions. By relying on region homogeneity, and not intensity (which can vary due to various factors, including line-of-sight changes and stray light from nearby bright regions), to define the final confidence of any given region, this ensemble is able to provide robust, consistent delineations of the CH regions. Using the metrics of global consistency error (GCE), local consistency error (LCE), intersection over union (IOU), and the structural similarity index measure (SSIM), the method is shown to be robust to different spatial resolutions maintaining a median IOU$>0.75$>0.75and minimum SSIM$>0.93$>0.93even when the segmentation process was performed on an EUV image decimated from$4096\times 4096$4096×4096pixels down to$512\times 512$512×512pixels. Furthermore, using the same metrics, the method is shown to be robust across short timescales, producing segmentation with a mean IOU of 0.826 from EUV images taken at a 1-h cadence, and showing a smooth decay in similarity across all metrics as a function of time, indicating self-consistent segmentations even when corrections for exposure time have not been applied to the data. Finally, the accuracy of the segmentations and confidence maps are validated by considering the skewness (i.e., unipolarity) of the underlying magnetic field.

     
    more » « less
  2. null (Ed.)
  3. The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project. 
    more » « less